Open Access
Issue
ITM Web of Conferences
Volume 1, 2013
ACTIMS 2012 – Activity-Based Modeling & Simulation 2012
Article Number 02003
Number of page(s) 16
Section Innovative Concepts
DOI https://doi.org/10.1051/itmconf/20130102003
Published online 29 November 2013
  1. B.P. Zeigler, H. Praehofer, T.G. Kim. Theory of Modeling and simulation. Second Edition. (Academic Press 2000). [Google Scholar]
  2. E. Pastor L. Zàrate E. Planas J. Arnaldos Mathematical models and calculation systems for the study of wildland fire behavior. Prog. in Ener. and Comb. Scie. J. 29, 139–153 (2003). [Google Scholar]
  3. R.O. Weber. Modelling fire spread through fuel beds, Progr. Energy Combust. Sci. 17 67–82 (1991). [CrossRef] [Google Scholar]
  4. N. Gobeau X.X. Zhou Evaluation of CFD to predict smoke movement in complex enclosed spaces: Application to three real scenarios: an underground station, an offshore accommodation module and a building under construction. HSL Report 255 (2004). [Google Scholar]
  5. D. Morvan, J.L. Dupuy, B. Porterie and M. Larini. Multiphase formulation applied to the modelling of fire spread through a forest fuel bed. Combustion Institute. 28, 2803–2809 (2000). [CrossRef] [Google Scholar]
  6. D. Morvan, S. Méradji, G. Accary. Physical modelling of firespread in Grasslands. Fire Safety Journal 44, 50–61 (2009). [CrossRef] [Google Scholar]
  7. A.G. McArthur, Weather and grassland fire behavior, Australian Forest and Timber Bureau Leaflet N°100, Canberra, (1966). [Google Scholar]
  8. M.V. Moreno, B.D. Malamud, E.A. Chuvieco. Wildfire Frequency-Area Statistics in Spain. Procedia Environmental Sciences, 7, 182–187 (2011). [CrossRef] [Google Scholar]
  9. C. Ordóñez, A. Saavedra, J.R. RodrÍguez-Pérez, F. Castedo-Dorado, E. Covián. Using modelbased geostatistics to predict lightning-caused wildfires. Env. Mod. & Soft. (29) 1, 44–50 (2012). [CrossRef] [Google Scholar]
  10. S.G. Berjak, J.W. Hearne. An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Eco. Mod. J. 148, 133–151 (2002). [Google Scholar]
  11. A. Ohgai Y. Gohnai S. Ikaruga M. Murakami K. Watanabe Cellular Automata Modeling For Fire Spreading As a Tool to Aid Community-Based Planning for Disaster Mitigation. Rec. Adv. In Des. and Dec. Sup. Sys. in Arch. and Urb. Plan. Springer. 193–209 (2004). [Google Scholar]
  12. A. H. Mathey E. Krcmar S. Dragicevic I. Vertinsky. An object-oriented cellular automata model for forest planning problems. Eco. Mod. J. 212, 359–371 (2008). [CrossRef] [Google Scholar]
  13. I.G. Georgegoudas G. C. Sirakoulis I. Andreadis Modelling earthquakes activity features using cellular automata. Math. and Comp. Mod. J. 46, 124–137 (2007). [CrossRef] [Google Scholar]
  14. E. Yacoubi A. El Jai Cellular Automata Modelling and Spreadability. Math. and Comp. Mod. 36 1059–1074 (2002). [CrossRef] [Google Scholar]
  15. Y.E. Zhang Y. Han T. Zou S. Wang J. Zou A CA-based Information System for Surface Fire Spreading Simulation Proc. of Int. Geo. and Rem. Sens. Symp., USA 5 3484–3487 (2005). [Google Scholar]
  16. Niloy Ganguly Biplab K Sikdar Andreas Deutsch Georey Canright P Pal Chaudhuri. A survey on cellular automata. Technical report, Centre for High Performance Computing, Dresden University of Technology (2003). [Google Scholar]
  17. E. Innocenti A. Muzy A. Aiello J.F. Santucci, D.R.C. Hill. Design of a multithreaded parallel model for fire spread. Sim. in Ind. 15 th Eur. Sim. Symp. 104–109 (2003). [Google Scholar]
  18. A. Muzy J.J. Nutaro B.P. Zeigler P. Coquillard Modeling and simulation of fire spreading through the activity tracking paradigm. Eco. Mod. 219 212–225 (2008). [CrossRef] [Google Scholar]
  19. G.A. Trunfio Predicting Wildfire Spreading Through a Hexagonal Cellular Automata Model. ACRI’04-Proc. of the Sixth Inter. Conf. on C. A. 3305 385–394 (2004). [Google Scholar]
  20. A. H. Encinas L.H. Encinas S.H. White A. Martin del Rey G. Sanchez Rodrigez Simulation of forest fire fronts using cellular automata. Adv. in eng. Soft. J. 38 372–378 (2007). [CrossRef] [Google Scholar]
  21. A.L. Sullivan Wildland surface fire spread modelling, 1990-2007.3: Simulation and mathematical analogue models. Int. Wild. Fire. J. E 18 387–403 (2009). [CrossRef] [Google Scholar]
  22. S. Bandini, G. Mauri, R. Serra Cellular automata: From a theoretical parallel computational model to its application to complex systems. Para. Comp. J. 27 539–553 (2001). [CrossRef] [Google Scholar]
  23. Robert J. Krawczyk. Architectural Interpretation of Cellular Automata, Poster presented at NKS, Boston, (2003). [Google Scholar]
  24. J. Podrouzek. Stochastic Cellular Automata in Dynamic Environmental Modeling: Practical Applications. Elec. Notes in Theor. Comp. Scie. 252, 1 143–156 (2009). [CrossRef] [Google Scholar]
  25. V. Guinot. Modelling using stochastic, finite state cellular automata: rule inference from continuum models. App. Math. Mod. 26, 6 701–714 (2002). [CrossRef] [Google Scholar]
  26. Z.L. Krougly, I.F. Creed, D.A. Stanford. A stochastic model for generating disturbance patterns within landscapes. Comp. & Geo. 35, 7 1451–1459 (2009). [CrossRef] [Google Scholar]
  27. A. Alexandridis, D. Vakalis, C.I. Siettos, G.V. Bafas. A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. App. Math. and Comp. 204, 1 191–201 (2008). [CrossRef] [Google Scholar]
  28. W. U. Pooch, A. James Wall Discrete Event Simulation: A Practical Approach. (CRC Press, 1993) [Google Scholar]
  29. I. Karafyllidis A. Thanailakis A model for predicting forest fire spreading using cellular automata. Eco. Mod. J. 99 87–97 (1997). [CrossRef] [Google Scholar]
  30. A. Muzy D.R.C. Hill Stochastic Modeling Strategies for the Simulation of Large (Spatial) Distributed Systems: Application to Fire Spread. Discrete event modeling and simulation. Theory and applications (CRC PRESS, 2011). [Google Scholar]
  31. D. Baroudi A discrete dynamical model for flame spread over combustible flat solid surfaces subject to pyrolysis with charring – an application example to upward flame spread. Fire Saf. J. 38 53–84 (2003). [CrossRef] [Google Scholar]
  32. Python Programming Language – Official Website. http://www.python.org. [Google Scholar]
  33. Gnuplot – portable command-line driven graphing utility – Official Website. http://www.gnuplot.info. [Google Scholar]