Semiclassics of Andreev billiards

T. Engl¹, J. Kuipers¹, G. Berkolaiko², C. Petitjean³, D. Waltner¹ and K. Richter ¹

¹ Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
² Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
³ SPSMS, UMR-E 9001, CEA-INAC/UJF-Grenoble 1, 17 Rue des Martyrs, 38054 Grenoble Cedex 9, France

This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly cited.

Article published online by EDP Sciences and available at http://www.iesc-proceedings.org or http://dx.doi.org/10.1051/iesc/2010mpcm03009
Semiclassics of Andreev billiards

T. Engl, J. Kuipers, G. Berkeloika, C. Pettjejain, D. Waltner, and K. Richter

1 Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
2 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA
3 IFMSM, UMR-9001, CEA-INAC/UJF-Grenoble 1, 17 Rue des Martyrs, 38046 Grenoble Cedex 9, France

Abstract

By coupling a superconductor to a quantum dot one may decide whether its classical counterpart has integrable or chaotic dynamics by looking at the density of states. Random matrix theory (RMT) predicts a true gap of the order of the Thouless energy E_T in the classical motion is chaotic and an exponential damping in the case of integrable motion. We use semiclassical techniques developed in the recent years to reproduce the RMT predictions.

Using the same techniques we show that the existence of a superconductor in proximity to a quantum dot has crucial effects on the conductance.

Andreev reflection and Andreev billiards

In 1964 Andreev found a new type of scattering process at the interface between a normal and a superconducting region [1]. An electron (hole) in the normal region hitting the superconductor is reflected as a hole (electron) which additionally accumulates a phase $e^{i2\eta}$ where η is the superconducting phase. This scattering mechanism gives rise to a new type of billiards: Andreev billiards consist of a ballistic region included by a boundary partially Andreev reflecting. Experimentally this can be realized by ballistic quantum dots coupled to superconductors.

Quantum mechanically Andreev billiards are described by the Bohr-Sommerfeld equations [2]

$$\left[\hat{H}^S - A^S - \Delta \right] |\psi\rangle = E |\psi\rangle$$

Within the so-called scattering approach the average density of states of Andreev billiards with two superconductors is normalized to the density of states of the isolated billiard via the mean dwell time $N \sim 1/K$.

$$S_G(E) = \frac{1}{\pi} \sum \lambda^{\phi}(E) \left(\frac{N}{S} \right)$$

where S_G is the Andreev conductance, E is the energy, and λ^{ϕ} is the stability amplitude for the ϕth channel.

Density of states

The density of states is related to the correlation functions $G_{\alpha,\beta}(r, \tau) = \langle \delta \xi_{\alpha,\beta}(r) \delta \xi_{\alpha,\beta}(r) \rangle$ of n scattering matrices. In leading order in the inverse channel number n, the correlation functions can be calculated by identifying the set of classical trajectories by nested plane waves, where an Emitter is represented by a node of degree 2 and the paths are straight lines. Each tree is then characterized by a vector θ whose nth row θ_i is the number of encounters and satisfies $\sum_i 1 - \theta_i + n + 1 = 0$. By cutting each tree at the top node such that it decomposes into several minors, one finds a recursion relation for each tree. If $N_1 \geq N_2$, this yields a fourth order equation for the generating function of the correlation function $G_{\alpha,\beta}(r, \tau) = \sum_{n=0}^{\infty} C_{\alpha,\beta} \phi_n \phi_n^{\ast}$ in general and a second order equation for $G_{\alpha,\beta}(r, \tau) = \sum_{n=0}^{\infty} C_{\alpha,\beta} \phi_n$ in special cases. Solving these equations and integrating over one variable yields the density of states $N \sim 1/K$.

Within the so-called scattering approach the average density of states of Andreev billiards with two superconductors is normalized to the density of states of the isolated billiard.

Conductance

The conductance for electrical transport between the leads 1 and 2 of an Andreev billiard with n channels is given by [3]

$$G_{12} = \frac{1}{\pi} \sum \lambda^{\phi}(E)$$

where S_G is the Andreev conductance, E is the energy, and λ^{ϕ} is the stability amplitude for the ϕth channel.

Conclusion and Outlook

Semiclassics based on the diagonal contribution is not sufficient to explain Andreev billiards. In fact, correlation between several orbits is important to describe the effects of superconductors in proximity to a quantum dot.

The conductance for electrical transport between the leads 1 and 2 of an Andreev billiard with n channels is given by [3]

$$G_{12} = \frac{1}{\pi} \sum \lambda^{\phi}(E)$$

where S_G is the Andreev conductance, E is the energy, and λ^{ϕ} is the stability amplitude for the ϕth channel.

Further possible investigations would be the shot noise of Andreev billiards or the effect of tunnel barriers.

References