Metamaterials for surface waves

S. ENOCH

Institut Fresnel, CNRS, Marseille France
Metamaterials for surface waves.

S. ENOCH

Institut Fresnel, CNRS, Marseille France.
Introduction

Institut Fresnel

Photonics, Electromagnetism, Image and Signal Processing.

about 60 permanent researchers (universities, engineering school, and cnrs) and 140 people overall. www.fresnel.fr

In the city where the Fabry-Perot interferometer was invented

Planier lighthouse in Marseille

Construction supervised by A. Fresnel
Introduction

Collaborators
PhD students: M. Farhat, M. Kadic, G. Dupont, CNRS researcher: S. Guenneau.

and also

A. B. Movchan, Liverpool University (water waves and thin plates)

R. Quidant’s group, ICFO, Barcelona (plasmonics)
Cloaking: our motivations

- Looking for experiments for popularization of the metamamaterial’s concepts.
- Promote the metamaterials ideas for other type of waves (water waves, flexural waves, surface plasmons polaritons).
Cloaking by transformation (reminder)

Coordinates transform (2D case)

\[
\begin{align*}
 & r' = R_1 + r \left(\frac{R_2 - R_1}{R_2} \right) \\
 & \theta' = \theta \quad \text{and} \quad x_3' = x_3
\end{align*}
\]

Permeability and permittivity

\[
\begin{align*}
 & \varepsilon_r = \mu_r = \frac{r - R_1}{r} \\
 & \varepsilon_\theta = \mu_\theta = \frac{r}{r - R_1} \\
 & \varepsilon_3 = \mu_3 = \left(\frac{R_2}{R_2 - R_1} \right)^2 \frac{r - R_1}{r}
\end{align*}
\]
Cloaking by transformation

Coordinates transform

\[r' = R_1 + r \left(R_2 - R_1 \right) / R_2 \]
\[\theta' = \theta \quad \text{and} \quad x'_3 = x_3 \]

Permeability and permittivity

\[\varepsilon_r = \mu_r = \frac{r - R_1}{r} \]
\[\varepsilon_\theta = \mu_\theta = \frac{r}{r - R_1} \]
\[\varepsilon_3 = \mu_3 = \left(\frac{R_2}{R_2 - R_1} \right)^2 \frac{r - R_1}{r} \]
Cloaking by transformation

Remark: « Nearly » invisible in TE polarization (magnetic field perpendicular to the figure):

\[\varepsilon_r = \left(\frac{R_2}{R_2 - R_1} \right)^2 \left(\frac{r - R_1}{r} \right)^2 \]

\[\varepsilon_\theta = \left(\frac{R_2}{R_2 - R_1} \right)^2 \]

\[\mu_3 = 1 \]
A plane wave at wavelength $\lambda = 0.2$ on a concentrator with inner radius $R_1 = 0.2$, ‘virtual’ radius $R_2 = 0.3$ and outer radius $R_3 = 0.4$; We note that the wavelength of the field inside the disc is shrunk, which is the concentrating effect, but the device is perfectly invisible.
Other transformations

Arbitrary shaped invisibility cloak

Arbitrary shaped invisibility cloak in presence of a line source of wavelength $\lambda = 0.3$ located at $(x,y) = (1,-1);$
Let $u(x_1; x_2; x_3; t)$ satisfy the Navier-Stokes equation:

$$\frac{\partial u}{\partial t} + u \cdot \nabla u + \frac{\nabla p}{\rho} = g + \nu \Delta u$$

Neglecting the liquid viscosity and assuming an incompressible and irrotational liquid flow and thus noting $u = \nabla \phi$, we obtain:

$$\nabla^2 \Phi = 0$$

BUT: Laplace equation manifests no wave character!
Waves are induced by the boundary conditions on the free surface air-liquid. Indeed, neglecting surface tension, we obtain on the free surface:

\[
\frac{\partial \Phi}{\partial t} + \frac{\left| \nabla \Phi \right|}{2} + \frac{p_0}{\rho} + g \xi = f(t), \quad \text{on } x_3 = \xi
\]

For a harmonic potential with frequency \(\omega \), we can choose the following form of \(\Phi \):

\[
\Phi(x_1, x_2, x_3, t) = \Re \left(\phi(x_1, x_2) \cosh(\kappa x_3) e^{-i\omega t} \right)
\]

\(\kappa \) is the spectral parameter and \(\phi \) the reduced potential, solution of the 2D Helmholtz equation on a free surface.
2D Helmholtz equation on a free surface

\[\nabla^2 \phi + \kappa^2 \phi = 0 \]

Furthermore, \(\kappa \) is linked to the wave-frequency \(\omega \) via the relation:

\[\omega^2 = g\kappa\left(1 + d_c^2 \kappa^2\right) \tanh(\kappa h) \]

involving the depth of liquid \(h \), its capillarity \(d_c \) and the gravity \(g \).

On a rigid obstacle, the boundary condition is a Neuman condition.
Cloaking Linear Water Waves

The viscosity matrix is such that the liquid will flow faster in the azimutal direction and will be bent around the central region of the cloak.

Goal: homogenization of the structured cloak to obtain an effective anisotropic fluid.
Taking the two-scale limit in the fast-oscillating potential field, we obtain the following homogenized problem when $\eta \to 0$:

$$
\nabla \left([\mu_{\text{hom}}] \nabla \phi_{\text{hom}}(x) \right) = \kappa^2 \phi_{\text{hom}}(x)
$$

The fluid flowing within the homogenized cloak is characterized by the shear viscosity matrix:

$$
[\mu_{\text{hom}}] = \begin{bmatrix} 1.7 & 0 \\ 0 & 8.2 \end{bmatrix}
$$
Cloaking Linear Water Waves
A classical experimental setup used in secondary schools:

Cloaking Linear Water Waves

Methoxynonafluorobutane:
viscosity 0.61 mm2/s
density 1.529 g/mL.
Transformation Electrodynamics is still challenging but …
The wavelength λ is supposed to be large enough compared to the thickness of the plate h and small compared to its in-plane dimension L, i.e. $h \ll \lambda \ll L$.

The out-of-plane displacement $u = (0; 0; U(r; \theta))$ in the x_3-direction (along the vertical axis) is solution of:

$$\langle \lambda \rangle \nabla \cdot (\xi^{-1} \nabla \left(\langle \lambda \rangle \nabla \cdot (\xi^{-1} \nabla U) \right)) - \beta_0^4 U = 0$$
Left: Real part of the displacement scattered by a rigid clamped obstacle of radius 0.25m for an incoming plane wave of frequency 22.5Hz.

Right: Real part of the displacement scattered by a rigid clamped obstacle surrounded by a multilayered isotropic cloak (inner radius $a = 0.3m$, outer radius $b = 0.6m$ and 20 layers, for an incoming plane wave of frequency 22.5Hz.

We consider the following transformation

\[
\begin{cases}
x' = \frac{x_2(y) - x_1(y)}{x_2(y)} x + x_1(y), & 0 < x < x_2(y), \\
y' = a < y < b, & \\
z' = z, & 0 < z < +\infty,
\end{cases}
\]

That gives us the permittivity and permeability tensors.

We chose a configuration in which a gold surface is structured with TiO$_2$ nanostructures.
The shape of the obtained TiO2 particles is conical ($h = 200$ nm, $r = 210$ nm) as a consequence of the etching anisotropy.
Comparing the areas under the numerically averaged curves b (curved mirror with carpet) and c (curved mirror without carpet) leads to reduction by a factor 3.7.

Larger scale
Nonlinearity
Collaboration with B. Molin
(IRPHE, Marseille)

Applications: anti vibration systems, fish farming...

Apply metamaterials concepts to other type of waves.

BGO FIRST, La Seyne sur Mer